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LEITER TO THE EDITOR 

Non-uniform long-range order in certain random systems 

J M Kosterlitz and Robert A Pelcovits 
Department of Physics, Brown University, Providence, RI 02912 USA 

Received 26 September 1983 

Abstract. We consider a special class of random anisotropic spin models, characterised by 
macroscopically preferred directions for spin alignment. Spin wave arguments applied to 
these models predict that ferromagnetism is unstable below four dimensions. We show 
that unlike the case of random axes distributed uniformly over the entire unit sphere, this 
spin-wave result is spurious and ferromagnetism can indeed exist below four dimensions. 
The ordering is very non-uniform, thus explaining why spin wave theory which is based on 
the assumption of uniform order yields instabilities. 

Much attention has been focused recently on the properties of vector spin models with 
quenched random site impurities, in particular, the value of the lower critical dimension- 
ality below which long-range ferromagnetic order does not exist. Imry and Ma (1975) 
showed by a very elegant domain argument that a random field will destroy long-range 
order below four dimensions for n-vector models with n z 2 .  Using a variety of 
arguments, Pelcovits et al(1978)  arrived at a similar conclusion for the case of random 
uniaxial anisotropy. This result was generalised by Aharony (1981) to include p-fold 
random anisotropies, with uniaxial anisotropy corresponding to p = 2. In all of these 
models, the local easy directions for spin ordering vary randomly over the entire 
surface of the n-dimensional unit sphere. The strength of the anisotropy may or may 
not be random. 

Aharony (1978) has further generalised these results to an n-vector spin system 
with the following Hamiltonian 

The spin Si at site i has n components indexed by a. The first term in (1) describes 
a non-random, nearest-neighbour exchange term, while the coefficients AGp are ran- 
dom. However, the configurational averages of the latter coefficients maintain the 
n-dimensional spin space isotropy. Aharony claimed that any type of random off- 
diagonal coefficients A;@ (i.e., a # p.) will destroy the ferromagnetic long-range order 
below four dimensions. This result was obtained by assuming that an ordered phase 
exists with finite magnetisation in, e.g., the l-direction and then shifting S’ by M. This 
shift generates a term 

A H  =I H~.s, 
i 

HP = M At;. 
where 

I 
(3)  
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The field Hi is thus a local random field. Consideration of the spin wave fluctuations 
due to the transverse component of Hj shows that these fluctuations diverge at and 
below four dimensions. Hence one concludes that M = 0 for d S 4. 

In this note, we show that the above result of Aharony is not true in general. While 
the transverse spin fluctuations may diverge in a spin wave approximation, this diver- 
gence only rules out uniform long-range ferromagnetic order. Indeed, we will now 
consider a subclass of models described by ( 1 )  where the deviation in spin alignment 
from site to site can be as great as 90°, yet long-range order still exists. 

i.e., site randomness. The n = 00 version of 
this model with off-diagonal randomness has been studied by Hertz et a1 (1982). At 
each site we rotate the spin coordinate system to diagonalise the second term in (1). 
We then obtain, in place of ( l ) ,  

Specifically, we consider A;’ = 

where R f p  is the rotation matrix at site i, 3; is the coordinate of the rotated spin, 
relative to rotated coordinates, and hp are the eigenvalues of the matrix A:’. If the 
matrix elements A:’ have a fixed relationship relative to each other (i.e., independent 
of lattice site), then the rotation matrix RPp and the spin coordinate axes will be 
independent of site. The Hamiltonian (4) can then be written as 

The exchange term is thus non-random once again. While the eigenvalues A Y  will 
have fixed ratios throughout the system, their values will vary randomly from site to 
site. Note that if we now shift say the s” component by M we do not generate a 
random transverse field. In fact for infinite anisotropy strength, the system will order 
along the coordinate direction with the largest value of A,?. Since these eigendirections 
are orthogonal to each other, there will be no exchange coupling between spins ordered 
along different eigendirections. The system then decouples into n independent random 
Ising models?. The randomness arises because spins ordered along a common eigen- 
direction are scattered randomly about the system. The fraction of such sites should 
be proportional to l l n .  Thus, if l / n  is greater than the percolation threshold pc of 
the lattice in question we would expect ferromagnetism to exist. For example, 
for n = 2, ferromagnetism would exist even in two dimensions for the triangular 
lattice, and in three dimensions for the simple cubic. The Khmelnitskii fixed point 
(Khmelnitskii 1975) should describe the continuous phase transition into the low- 
temperature phase. The order is very non-uniform with spins aligned along the mutually 
orthogonal eigendirections. 

For finite values of the anisotropy we expect the ferromagnetic order to persist 
below four dimensions, with the ordering becoming progressively more uniform as the 
strength of the anisotropy is lowered. This supposition has been confirmed for a special 
case of ( 5 )  where A 9 is zero for all values of a except one value which varies randomly 
from site to site. This model is the ‘cubic’ random axis model first studied by Aharony 
(1975). Mukamel and Grinstein (1982) have shown that near four dimensions this 
model does indeed exhibit a Khmelnitskii transition at finite values of the anisotropy, 

t This statement assumes that the eigenvalues are non-degenerate. Those eigenvalues which are m-fold 
degenerate will correspond to models with O ( m )  symmetry. 
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for  all values of n. Presumably, percolation considerations are unimportant when the 
anisotropy is finite. 

We have further substantiated our results by constructing a Mermin-Wagner 
(Mermin and Wagner 1966, Mermin 1967), style ‘proof’ for n = 2 utilising the replica 
trick. Similar ‘proofs’ have been done for the random p-fold anisotropy models 
(Schuster 1977, Pelcovits 1979). For the model given by ( 5 )  we find the following 
inequality, characteristic of non-random systems 

12  M2kBT I ddk/uk2 (6) 

where U is finite and proportional to J. This result suggests that long-range ferromag- 
netic order can exist down to two dimensions. On the other hand, if we consider the 
more general model where the coefficients A;’ vary randomly with no fixed relationship 
among coefficients at a single site we find 

where F{C}  is some function of the second cumulants C of the distributions of the 
coefficients ATp,  vanishing when A:’ = 0. The result (7) is similar to that found in the 
random-field and random-axis model (Schuster 1977, Pelcovits 1979) and suggests 
that ferromagnetic order is absent below four dimensions even at zero temperature. 

We are grateful to A Aharony and D Mukamel for helpful discussions. J M Kosterlitz 
was supported in part by the NSF-Materials Research Laboratory Program at Brown. 
Robert A Pelcovits was supported by the NSF-Condensed Matter Theory-Grant DMR 
80-05879. 
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